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Abstract 
The rotational dynamics of molecular adsorbed chain in longitudinal electric field is studied theoretically. The  
nonlinear dynamic equations are obtained with accounting of quadrupolar interactions between molecules. A  
new dimensionless parameter (relation of electric and intermolecular interactions) is introduced in the system of 
the dynamical equations. It is shown that topology of the energy relief on the angle space is transformed in  
dependence on the electric intensity. The rotational reordering in electric field is complex phenomenon that have 
several stages. One of the intermediate states is an indifferent equilibrium net (orientation melting). The stable  
state is found in strong  electric fields.  
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Introduction 

Low dimensional systems are very important both for modeling and for applications. Real objects 
can be adsorbed structures [1] or crystals with low-dimensional motives. Studying chains is a 
necessary stage of investigation of dynamics and thermodynamics of more complex systems: crystals 
[2], nonlinear dynamics of atomic and molecular lattices [3]. A chain model is used for description of 
linear lattice dynamics and thermodynamics of molecular cryocrystals [4]. Complexity of models 
even for 1D molecular chain requires some approximation to be used in order to simplify the system 
description. Such approximations are model potential and 1D rotation in nonlinear consideration [1,4]. 
The small oscillations [5] and nonlinear large amplitude ones with topological transitions [6,7] were 
considered in 1D molecular chain with quadrupolar interaction. In 2D molecular layers with 
quadruple interaction the orientation small vibrations [8] and nonlinear rotational dynamics [9] were 
considered. We found the linear oscillation spectrum; the effective potential relief and its topology are 
reconstructed in dependence on the anisotropy parameter of adsorbed lattice. 

In the present work we study the topological reconstruction in the nonlinear molecular chain under 
an external electric field presence. We introduce the energy of the molecular chain in the electric field 
and derive corresponding dynamical equations. We find that the stationary solutions have new 
features and the topology of the effective potential of the system has bifurcation points and transitions 
in dependence on electric field value. 

 
 

1. Derivation of dynamic equations for the molecular chain in electric field  

We consider linear molecules which consist of two or three atoms (N2, CO2, H2). They cannot 
have intrinsic electric dipole moment as sequence of symmetry; a quadrupolar moment is the lowest 
electric one. The molecules can have induced electric dipole moment only: ;indd E E      

cos ;  sin .E E E E    Here   and   are longitudinal (along molecule axis) and transverse 
electric polarizability, E  and E  are longitudinal and transverse components of electric field 
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intensity,   is angle between the molecular axis and vector E. Potential energy of an induced dipole 

is / 2indEd


. Substitution of the vectors components yields after simple transformation the potential 
energy of a molecule in external electric field. For situation when adsorbed molecules could rotate in 
the plane of substrate only [1], they have only one degree of freedom. Translational degrees of 
freedom are frozen by substrate. In these suppositions, which were considered in details in articles [5-
7], and accounting the electric field contribution, the potential energy of molecules rotational 
interaction in the chain can be written as: 
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Here new dimensionless parameters of the system related to electric field effect arise: 
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They describe isotropic and anisotropic contributions respectively. Each parameter gives 

relation of a molecule potential energy in electric field and in the chain molecular field. i  is an angle 
between the principal axis of corresponding molecule and direction of radius-vector that connects 
centers of inertia of the molecules in sites i and i+1, the electric field intensity is oriented along the 
chain. Rest parameters describe quadrupolar contributions: Q is a quadrupolar moment of a molecule, 
R is a distance between molecules. Potential energy (1) is obtained in supposition of the nearest 
neighbors interact only. Without electric field only three symmetric ordering can be constructed [5,6], 
they provide minimum of the chain potential energy.  

Minimum of the energy is reached for the molecules' alternating ordering in the chain that 
defines even (odd) sites. Stability of this structure was confirmed by small oscillation and their normal 
coordinates investigation [5] and plotting of the effective potential relief for long wave excitations   
[5-7]. 

Lagrangian of the system is L=K-U where U and 21
2 i iK J     are potential and kinetic 

energies of a molecule with moment of inertia Ji=J0 and angle velocity i . Then system of equations 
for chain motion in electric field is obtained. Let us remember that minimum of the energy without 
presence of electric field is reached for the molecules' alternating ordering even   and odd  . We 
suppose keeping of the dividing onto two sublattices in an external field. Then these motion equations 
can be written for two sublattices in the long-wave limit for arbitrary amplitudes and nonlinearity. All 
even or odd sites are equivalent and the differential-difference sets of equations are transformed into a 
system of differential equations. The dimensionless time is introduced by relation 0t t    
where 2

0 0/ J   . Further analysis will be more convenient with the following change of variables: 
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       (3) 

 
The system of equations can be rewritten in new more convenient variables: 
 

2{4( )sin cos 4 sin 2 } 0;
2{4( )sin cos 4 sin 2 } 0.
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Integral of the rotational motion of the molecular chain can be obtained: Wef=Wk+Wp. It 

includes "kinetic" Wk and "potential" Wp contributions:  
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Potential relief for Wp over the space of angles is shown on fig. 1. High density of energetic 

equidistant counters corresponds to high gradient. The fine structure of valley or low energy region is 
shown as a function of coordinates m and p. In the right panel the isoenergetic counters are boundaries 
of the following regions. 1) Region of finite oscillations near equilibrium state. 2) Low separatrix 
separates regions of finite and infinite motion (rotation). 3) Region of finite variation of p and infinite 
variation of m variables. Analysis of linear oscillations with arbitrary dispersion [5,6] demonstrates 
strong relief dependence on wave number however for not large k topological properties of the relief 
remain. 

 

  
 

Figure 1. The chain without influence of electric field: E=0, 0 . Left panel. The potential relief Wp (5) as a 
counter plot without presence of electric field. Variable  m changes in range [ ; ]   . Right panel. Detail view 

of valley / 2p  . See details in text. 
 

2. Positions and Energies of Stationary Points 

The stationary points of the equations can be determined by conditions 0m   and 0p  . Then 
the set of equations (1) can be rewritten in the following form: 
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    (6) 

 
Let us rename the factors in the system (6). Then we transform the system to the following form:  
 

0; 
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      (7) 

 
Strings in eqs (6,7) coincide, the second factors f, h are corresponding square brackets and the first 
factors e, g are corresponding sine functions. Solutions of equations (6) satisfy to several simpler 
systems.  

1) The first of them is f=0; h=0. It yields solutions 
 

1 1,2 1 1,2/ 2 2 ; / 2 2m j p n             (8) 
 

that deliver minimum of the chain energy and coincides with equations without electric field 0  
[5]. 
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2) The second simple system is f=0; g=0, it has solutions 
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The last stationary points correspond to low saddle ones without electric field [5]. Dependence on 
electric field arises. 

3) The third simple system is e=0; g=0. This system has two kinds of solutions. The first kind 
of solutions coincide with condition E=0 and correspond to the higher saddle points without electric 
field [5]. The second kind of solutions corresponds to peaks of the effective potential without electric 
field. 
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4) The forth simple system of equations is e=0; h=0. It has no solution without presence of 

electric field [5-7] with accounting relation between coefficients a and b in the interaction. Electric 
field can change relation between parameters and deliver a new solution to the system of equations  
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Therefore, complete set of the special points for the system of equation (6) or more convenient 

one (7) could be obtained from the solutions of the simpler systems pointed above. Without electric 
fields the potential relief Wp over the space of angles is shown on fig.1 following to [5-7]. Existence 
of only one motion integral means that the system is not integrable. Nevertheless, it is possible to 
obtain qualitative consequences about its behavior. Several intervals of energy with qualitatively 
different character of motion can be pointed out [5]. We can find the effective potential (5) in the 
stationary points (8-11) and then analyze topology evolution in dependence on electric field. 

1) The first simple system solutions give the following value of the effective potential (5) of the 
molecular chain: 
 

1 1 1( , ) 4[2( )cos cos cos 2 cos 2 ]pW W m p a p m b m c p        (12) 
 
These solutions correspond to minimums of the effective potential on fig.1. 

2) The second simple system delivers the effective potential value: 
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The lower separatrix (curve of the type 2 on fig.1) coincides with energy of the low saddle point SLW . 

3) The third simple system has two types of solutions. The first solution corresponds to the 
higher saddle points (higher separatrix with energy SHW ) of the effective potential without electric 
fields. The second solution corresponds to the top points of the effective potential without electric 
fields. 
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4) The forth simple system has two solutions (11) which give the following value of the 

effective potential (5) of the molecular chain: 
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At the first glance we can note some features of the stationary point’s behavior in dependence 

on electric field parameter   which is defined in (2). The first stationary points 1 1,m p  and theirs 
energy do not depend on electric field. The second and forth sets of stationary points 2 2,m p  and 

4 4,m p  positions and theirs energies both depend on electric field. The third stationary points 3 3,m p  
positions do not depend on electric field nevertheless theirs energies depend on one. 

Therefore, the system of equation which describes the molecular chain rotational dynamic, 
evolution of all stationary points comes by unique way in dependence on electric field intensity. 
Further investigation will consider this evolution and changes of phases in the chain. 

 
3. Transitions of the stationary points in electric field and topology transformation 

The special points of the effective potential can have the same energy. The equality of the 
different special point energies Wm=Wn defines the critical value of electric field parameter: κcm-n. This 
value corresponds to critical change in the system topology. 

Let us range all the critical electric field parameters from minimal to maximal values. These 
critical values are defined by the following relations 
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     (16) 

 
Now we plot the graphic presentation of the special points of the effective potential. First of 

all the third type stationary points do not change their positions, however their energies (14) change 
considerably. As the result the third type stationary points take part in the most bifurcation points 
(16). We can conclude again that, with electric field increasing, the third type stationary points of two 
kinds change their energies in opposite directions. Namely, the former higher saddle points of the 
effective potential increase their energy, and the former top points decrease one. This stationary 
point’s energy decreases with electric field increasing. The new forth type stationary points of two 
kinds give them know at κ=0.5 (higher saddle points splitting) and κ=2 (peaks joint into new higher saddle 
points). 

At field κ=1.25 two kinds of the third type stationary points change their types: the former 
higher saddle points are transformed into new top points of the effective potential, and the former top  
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Figure 2. Left panel. The initial topology of the potential relief under: E=0, κ=0.  
Right panel. The higher saddle points are splitting. New peaks are ready to arise. E>0, κ=0.5. 

 
points are transformed into new higher saddle points. At fields κ=1.25 the effective potentials go in 
opposite direction very far and have different signs. The evolution of the high energy region in 
electric fields is shown on Fig. 3. 

 

   
 

Figure 3. Left panel. New and old peaks are equal: E>0, κ =1.25.  
Right panel. The old peaks transform into new higher saddle points. E>0, κ= 2.0. 

 
The first type stationary point energy can be reached. Coordinates of the both stationary 

points are stable. Especially interesting fact is that these values of energy are reached simultaneously 
by the formerly lowest and highest points of the effective potential relief (without electric fields). It 
means that as the bottom of 'valley' as the high energy region are reconstructed qualitatively in the 
electric field. 

 

   
 

Figure 4. Left panel. The old top points and minima transform into new saddle points: E>0, κ =6.0.  
Right panel. The old top points transform into new minima. κ= 10.0. 
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Conclusions 

The dynamical analysis of long-wave motion of the molecular chain leads to conclusion  
that the reordering process has complex picture. The topological analysis of the effective potential 
shows that under influence of temperature disordering comes in several steps [5-7] and four 
qualitatively different dynamic phases exist. Without electric field (fig. 1), the first phase corresponds 
to oscillations near equilibrium alternatively ordered state. The second one corresponds to low-energy 
rotational excitations along 'valleys' (easy directions of the effective potential) that do not destroy 
strong correlation between molecules but a structural data show rotational disorder (melting).  The 
third one corresponds to energies that are enough to produce travel between the 'valleys' and some 
'islands' in the angle space are forbidden due to the correlations.  

Accounting presence of external electric field equations of the molecules' motion are 
derived and integral of motion is obtained in the long-wave limit. Depending on the external electric 
field value the topology of the effective intermolecular potential is transformed in several steps (figs. 
2-4). Initially the most stable alternative ordering (figs. 1, 2) of the molecules in the chain is finally 
transformed into the linear ordering in strong electric field (fig. 4). Rebuilding of the initial order goes 
firstly under high energy values and could be corresponded to the fourth phase change (fig. 2). The 
topology of the low energy states changes under higher electric field values (figs 3,4). Initially the 
valleys change their shape and the saddle points height (fig. 3). Then we have rotate disorder state 
with an indifferent equilibrium (fig. 4, left panel) and new equilibrium state (fig. 4, right panel). The 
initial peak point is transformed into the saddle point and then into the energy minimum. The initial 
minima points are transformed into the indifferent equilibrium lines and then into the low saddle 
points. The initial higher saddle point splits in two ones and move into initial maxima positions, their 
initial position become final maxima. The initial lower saddle point splits in two ones and move into 
initial minima positions, their initial positions joint and become final minima. 
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