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Abstract 
In the paper the simplification of construction of nonlinear normal vibration modes by Shaw-Pierre in power 
series form is considered. The simplification can be obtained via change of variables in the equations of motion 
of dynamical system under consideration. This change of variables is constructed by means of so-called 
ordered Schur matrix decomposition. As the result of the transformation there is no need in solving nonlinear 
algebraic equations in order to evaluate coefficients of nonlinear normal mode. 
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Introduction 

When investigation of the behavior of multi-dimensional dynamic systems takes place it is very 
importatnt to be able to construct reduced order model of that system. When a nonlinear system is 
studied, such reduction can be done, particularly, for regimes close to normal modes, since the system 
with many degrees of freedom (DOFs) behaves in such regimes as a single-DOF one. In such regimes 
all state space variables of the system change their values in a coherent manner. 

Analytical dependencies which allow description of normal modes in mechanical systems can 
be obtained using two main approaches: by Kauderer-Rosenberg and by Shaw-Pierre. In the first case 
nonlinear normal mode (NNM) of a conservative (or close to conservative) mechanical system can be 
represented as a certain trajectory in the configuration space of the system [1]. The second concept 
which is applicable to non-conservative systems, was developed in works by S. Shaw, C. Pierre and 
their co-authors [2-4]. According to Shaw and Pierre, NNM of a non-conservative autonomous 
dynamical system can be defined as its invariant manifold. In this case all variables of the phase space 
of the system can be evaluated in unambiguous manner through a couple – certain displacement and 
corresponding velocity [4]: 

     , ; , ; 1,.. 1, 1,..i i m m i i m mq q q s s s q s i m m N        (1) 

where , ( 1, )i iq s i N  are generalized displacements and velocities of the system. 
Movement of the system in normal mode can be described as movement of representation point 

on the hypersurface (1). 
There exists large number of works devoted to applications of NNMs. One can find here works 

devoted to vibration cancellation and energy pumping [5,6], papers devoted to vibrations of beams 
[7], plates and shells [8,9], vehicle suspension [10], rotordynamics [11-13], shallow arches etc. 
Comprehensive overview of different NNM theories and applications can be found in [1,14,15]. 

In the present work construction of NNMs is used together with matrix decomposition by I. 
Schur [16,17]. Schur transformation is a matrix similarity transformation. It allows one to transform a 
square matrix to an upper triangular one (using complex numbers) or to an upper quasi-triangular one 
(using real-valued matrices). Transformation of matrix to Schur form is an important method of 
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eigenvalues calculation for non-symmetric matrices [17]. Also it is used for calculation of invariant 
subspaces of linear operators, for solving certain matrix equations (Sylvester matrix equation) etc. 

In Section 1 of the pesent paper algorythm of NNM construction in power series form is 
discussed. Its is shown which peculiarities of equations of motion lead to nonlinear algebraic 
equations with respect to coefficients of NNM. In Section 2 some properties of Schur decomposition  
are described. In Section 3 application of Schur transformation to NNM construction is discussed. 
Two approaches are considered: conventional and modified Schur transformations. Section 4 contains 
an illustrative example. 

 
1. Problem formulation 

The present work is devoted to construction of NNMs by Shaw-Pierre in power series form. 
One of the problems that arise during this approach is that some of coefficients of power series that 
represent NNM must be evaluated from a system of nonlinear algebraic equations, and initial 
approximation for these coefficients is usually unknown. 

Let us consider in brief the process of construction of NNMs by Shaw-Pierre in power series 
form according to [4] and find out possible causes of difficulties in computation. Consider 
autonomous non-conservative dynamical system (2): 

    ; , ; 1, .i i i iq s s f q s i N        (2) 

The functions  ,if q s  are assumed to be analytical functions in the vicinity of zero equlibrium 
position. It is assumed that the system is free of internal resonances.  

Let 1q  and 1s  be the independent variables for the considered NNM (1) (that is m=1). Let us 
denote 1 1,q u s v  . Differentiation with respect to time t now becomes a partial differential 
operator: 

  1 1 1 2 2
1 1

d , ,..., , ,...
d

q s v f u q v s
t q s u v

   
   

   
     (3) 

By means of this operator the system of ODEs (2) is transformed to the following PDEs: 

 

   
 

1 2 2

1 2 2 2 2

, ,..., , ,... ,
2,

, ,..., , ,... , ,..., , ,... .

k k
k

k k
k

q qv f u q v s s
u v k N
s sv f u q v s f u q v s
u v

          
  

      (4) 

Dependencies (1) are the solutions of equations (4). Such PDEs can be solved in different ways 
(the solution can be written in form of power series [3,4] if small/moderate oscillations are considered 
or found via Galerkin method [2] for large oscillations). Here the solution is found in power series 
form: 

         

         

2 2
1 2 3 4 5

2 2
1 2 3 4 5

...
, 2,

...

n n n n n
n

n n n n n
n

q u v u uv v
n N

s u v u uv v

    

    

       
     

   (5) 

Solution (5) is substituted into (4). At this stage the functions  ...kf  are considered to be  
polynomials (or they should be expanded in power series otherwise).  When terms of the same power 
of u and v are equated in the obtained equalities, this leads to the recurrent system of algebraic 
equations with respect to unknown coefficients    ,n n

k k  . Among others there exists a closed 
subsystem of nonlinear equations with respect to        

1 2 1 2, , ,n n n n    , that is, the coefficients of linear 
terms in (5).  

All  other equations in the recurrent system are linear with respect to unknowns of current step 
but nonlinear with respect to quantities evaluated previously. That is, there can be found system of 
linear algebraic equations with respect to ( ) ( ) ( ) ( ) ( ) ( )

3 4 5 3 4 5, , , , ,n n n n n n       (coefficients by quadratic 
terms). Both its matrix and right hand side depend on previously evaluated        

1 2 1 2, , ,n n n n    .  The 
same for coefficients by cubic terms and so on. This means that once        

1 2 1 2, , ,n n n n     are found, all 
other coefficients are evaluated in unique sequential way. 
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It follows from the above considerations that the initial phase of calculation process  
(calculation of        

1 2 1 2, , ,n n n n    ) is more difficult than others, because        
1 2 1 2, , ,n n n n     are 

evaluated from nonlinear algebraic equations, and usually no initial approximation for these 
coefficients is provided. 

Sometimes this problem may be overcome by introduction of some additional requirements. 
For example, one may search for such an invariant manifold (1) at which variables ,m mq s  have much 
larger amplitudes (active variables) than other variables of the phase space. In such case coefficients  
of series (5) are expected to be small and therefore one may use zero initial approximation for 

       
1 2 1 2, , ,n n n n    . Different NNMs can be found by choosing different pairs ,m mq s  as independent  

variables. This approach was used by the author in [11,12]. 
Nonlinearity of algebraic equations with respect to        

1 2 1 2, , ,n n n n     is caused by the structure 

of the equations (4), namely, by terms of such sort:  1 2 2, ,..., , ,... kqf u q v s
v




.  Indeed, let the function 

 1 ...f  be represented as  

   1 2 1 1 1
2

2 2
2

2, ,..., , ,... , ,..., , ,...
N N

n n n n
n n

a u a qf u q v s u q v sb v b s 
 

           (6) 

where  1 ...  -  is a polynomial of power 2 or higher. 
Taking into account (5) and (6) one can obtain: 

             
1 2 2 1 1 1 2

2 2
1 2 2..., ,. ....., , ,... ...

N N
k n

n n
n

n

k

n

n nqf u q v s a u a b vu b v
v

v u    
 

           
     (7) 

Once parentheses are open in (7) the terms of type    
11

kn u  ,     
11

kn v  ,    
11

kn u   and   
   

11
kn v   arise, which leads to nonlinear algebraic equations with respect to        

1 2 1 2, , ,n n n n    . 
Let us consider equations of motion (2) in matrix form: 

   y A y y  ,       (8) 

where  2 2, , , ,... Ty u v q s  ;  vector-function  y  is purely nonlinear. 
Nonlinear algebraic equations mentioned above do not appear if motion equations have the 

following form: 

 
 
 
 

11 12 1 1

21 22 2

2 2 333 3,2

2 2 42

2 2

2

43 4,

2

2

22

2

2

, ,..., , ,...
, ,..., , ,...
, ,..., , ,...
, ,..., , ,...

N

N

u q v s
u q v s
u q

a a Bu u
a av v

q qa a
s sB a a

v s
u q v s






                                                  



 
 
    

   (9) 

If the block 1B  is filled with zeros then no nonlinear algebraic equations with respect to 
       
1 2 1 2, , ,n n n n     appear. They become linear instead. On the other hand, if the block 2B  is filled 

with zeros then nonlinear algebraic equations with respect to        
1 2 1 2, , ,n n n n     do appear, but 

they have trivial solution. So one of the invariant manifolds has zero linear part and thus can be 
computed much easier. 

It will be shown further that each of these situations can be realized (but not simultaneously) if 
some specific change of variables is applied to the system (8). This change of variables can be 
constructed via so-called Schur matrix transformation. The transformation and its properties are 
discussed in the next Section. 

 
2. Schur decomposition 

 
▲ Theorem 1 (real form of Schur decomposition) [16,17].  For an arbitrary real-valued 

square matrix  A  there exist an orthogonal matrix  Q  such that      TA Q T Q  where the upper 
quasi-triangular matrix  T  has the following structure: 
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 
1

2

0 m

T
T

T

T

   
   
 
 
 


, 

where block matrices iT  are blocks 1x1 or 2x2 corresponding to real eigenvalues and conjugate pairs 
of complex eigenvalues of the matrix  A  respectively. The sequence of the diagonal blocks in the 
matrix  T  may be arbitrary. 

Correspondence between matrix blocks and eigenvalues should be understood as follows. Each 
1x1 block contains some real eigenvalue whereas eigenvalues of each 2x2 block are included in the 
spectrum of the matrix  A .  

Construction of the matrix  T  is performed iteratively via QR-algorithm [17]. So it is 
impossible to control the sequence 1 2, ,...T T  of diagonal blocks during this process. However, once it 
is constructed, it is possible to rebuild (reorder) this matrix so that first k diagonal blocks correspond 
to a certain subset of eigenvalues [18-20]. This is needed for construction of invariant subspaces of a 
linear operators and for finding bases in these subspaces. 

It should be noted that Schur decomposition with reordering is available as a standard routine in 
some popular computational software (Matlab, Scilab, LAPACK), so the details of this procedure are 
not discussed here. However it should be noted that reordering is not possible if eigenvalues of 
reordered blocks are too close. This happens because matrix transformations become singular [18]. 

 
3. Application of Schur decomposition to construction of invariant manifold of quasi-linear 

mechanical system 
 
Consider equations of motion of quasilinear dissipative mechanical system with N degrees of 

freedom in matrix form: 
   y A y y       (10) 

Vector  1 1,..., , ,...,N N
Ty x x x x     consists of generalized displacements and velocities of the system. 

The vector  y  - contains nonlinear analytical functions (polynomials of power greater than 1). 
It is supposed that damping in the system is small and matrix  A  has N pairs of complex-

conjugated eigenvalues (non-multiple). Each pair can be assigned with corresponding invariant 
manifold represented as NNM by Shaw-Pierre. 

Let us consider constriction of the NNM by Shaw-Pierre which correspond to the pair of 
eigenvalues  ,k k  . 
 
3.1. Usage of conventional Schur decomposition with reordering 

As the first step Schur decomposition with reordering for matrix  A of the system (10) is 

considered:      TA Q T Q . Reordering should be performed in such way that eigenvalues of the 

starting diagonal block 1T  of matrix  T  has eigenvalues  ,k k  . In this case matrix  T  has the 
structure shown on Fig. 1. 

 
Figure 1. Structure of the Schur matrix. Nonzero elements are shaded in grey. 

   1 0 ,k kdet T I      
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Now the following change of variables is introduced into (10):  y Q z . The new equations 

are multiplied from the left by    1 TQ Q
 . If one denotes       TQ Q z F z  , then the 

transformed equations have the form: 
   z T z F z       (11) 

Let us introduce the following notation: 1 2,z u z v  ;  * 3 4 2, ,..., T
Nz z z z  , 

 1* 13 14 1,2, ,...,
T

Nt t t t   ,  2* 23 24 2,2, ,...,
T

Nt t t t  ,    ** , 3,2ijt t i j N     ,   * 3 4 2, ,..., T
NF F F F . 

Using these equations (11) can be rewritten into 
 
 

   

11 12 1* * 1 *

21 22 2* * 2 *

* ** * * *

, ,
, ,
, ,

T

T

u t u t v t z F u v z
v t u t v t z F u v z
z t z F u v z

    
    
  





     (12) 

Now the change of independent variables is performed: d u v
dt u v

 
 

 
  . The NNM by Shaw-

Pierre is introduced as 
* 10 01

2

i j
ij

i j
z u v u v  

 

         (13) 

where vectors mn  are composed of unknown coefficients of the NNM. As the result the following 
equality is obtained: 

     

     

     

11 1* 10 12 1* 01 10
2

21 2* 10 22 2* 01 01
2

** 10 ** 01

...

...

...

T T i j
ij

i j

T T i j
ij

i j

t t u t t v u v
u

t t u t t v u v
v

t u t v

   

   

 

 

 

                
                 

  



     (14) 

Here (…) denotes terms of power greater than 1.  
Algebraic equations for unknowns 10 and 01  can be obtained when underlined terms in (14) are 
used: 

     
     

10 21 2* 10 01 ** 10

12 1* 01 10 22 2* 01

11 1* 1

01 *

0

* 01

T T

T T

t t t

t

t t

t t t t

   

    

   

   


    (15) 

This system (15) is nonlinear but it has trivial solution 01 10 0   . This solution exactly 
corresponds to the manifold under consideration. Indeed, if system (11) was linear (  z T z ) then 

the manifold under consideration (corresponding to  ,k k  ) would be  0 3,2 Nmz m   due to the 

structure of matrix  T .  Since the linear part of NNM (13) remains the same both for linear and 
nonlinear case, the solution 01 10 0   is the sought-for one. 

Therefore there is no need in composing and solving equations for 10 and 01 . In order to 
determine the NNM one needs only to compute the coefficients of nonlinear terms of (13) which can 
be done as described in Section 1. 

 
3.2. Usage of modified Schur decomposition (alternative approach) 

At the beginning let us prove the theorem concerning modified form of Schur decomposition. 
▲ Theorem 2 (modified real form of Schur decomposition)  For an arbitrary real-valued 

square matrix  A  besides Schur expansion of form      TA Q T Q  (where  T is an upper quasi-

triangular matrix) there exists an alternative decomposition      TA P L P where  L  - lower 
quasi-triangular matrix, and diagonal blocks of matrices  T  and  L correspond to the spectrum of  
matrix  A . Matrices  Q  and  P are orthogonal ones. 
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► Existence of the decomposition      TA Q T Q is guaranteed by Theorem 1. On the other 

hand similar decomposition  exists for transposed matrix      T TA P T P , here  T   - is an upper 
quasi-triangular matrix and  P  is an orthogonal one. If the latter equality is transposed, it follows 

from it that              
TT T T T TA P T P P T P   . Denote    TL T  , therefore the decomposition  

now looks as      TA P L P . Since  T    is an upper quasi-triangular matrix, matrix    TL T   is, 
obviously, a lower quasi-triangular one. Transposition does not change spectrum of matrix, therefore 
the spectrum of  A  and  TA  is the same. This spectrum corresponds to diagonal blocks of both  T  

and  T   according to Theorem 1. Since    TL T  , the diagonal blocks of  L  also correspond to the 
spectrum of  A . Q.E.D. ◄ 

 
If      T TA P T P  is Schur decomposition with reordering, then the expansion 

     TA P L P can be built in such way that first k diagonal blocks of  L  correspond to a given 
subset of eigenvalues (see below). 

Let us consider constriction of the NNM by Shaw-Pierre which correspond to the pair of 
eigenvalues  ,k k   in (10). 

As the first step modified Schur decomposition with reordering for matrix  A of the system 

(10) is considered:      TA P L P . This can be done in the following way. Firstly, Schur 

transformation with reordering is applied to the matrix  TA :        T TA P T P . Reordering should 
be performed in such way that eigenvalues of the starting diagonal block 1T of matrix  T   has 

eigenvalues  ,k k  . Matrix  L  is then obtained as    TL T  .  In this case matrices  T   and  L   
have the structure shown on Fig. 2. 

 

 
Figure 2. Structure of the Schur matrices in the alternative approach. Nonzero elements are shaded in grey. 

 
Now the following change of variables is introduced into (10):  y P z . The new equations 

are multiplied from the left by    1 TP P
 . If one denotes       TP P z F z  , then the 

transformed equations have the form: 
   z L z F z       (16) 

Let us introduce the following notation: 1 2,z u z v  ;  *1 31 41 2 ,1, ,...,
T

Nl l l l   , 

 *2 32 42 2 ,2, ,...,
T

Nl l l l  ,    ** , 3,2ijl l i j N     ,  * 3 4 2, ,..., T
NF F F F . Using these equations (16) 

can be rewritten into 
 
 

   

11 12 1 *

21 22 2 *

* *1 *2 ** * * *

, ,
, ,
, ,

u l u l v F u v z
v l u l v F u v z
z l u l v l z F u v z

   
   
    





     (17) 
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Now the change of independent variables is performed: d u v
dt u v

 
 

 
  . The NNM by Shaw-

Pierre is introduced as expansion (13). As the result the following equality is obtained: 

  
  
     

11 12 10
2

21 22 01
2

*1 *2 ** 10 ** 01

...

...

...

i j
ij

i j

i j
ij

i j

l u l v u v
u

l u l v u v
v

l u l v l u l v

 

 

 

 

 

  
         

  
          
    



      (18) 

Here (…) denotes terms of power greater than 1. 
Algebraic equations for unknowns 10 and 01  can be obtained using underlined terms in (18): 

 
 

10 21 01 *1 ** 10

10 22 01 *2 ** 01

11

12

l

l

l l l

l l l

  

  

  

  
     (19) 

System (19) is a system of linear algebraic equations, which allows one to easily compute 
unknowns 10 and 01 .  All other coefficients are obtained in conventional manner (see Section 1). 

 
4. Example 

 
Consider the nonlinear 3-DOF system depicted on Figure 3. Its motion equations have form (20). 

 

 
 

Figure 3. Three-DOF nonlinear system. 

 
   

 

3
1 1 1 1 1 2 1 2 1

2 2 2 2 2 1 3 2 3

3 3 3 4 3 3 3 2

0
0

0

m x x c x c x x x
m x x c x x c x x
m x x c x c x x

 



      
      
     

 
 
 

    (20) 

Parameters of the system are taken as follows: 
1 2 3 1 2 3 42, 0.5, 1, 1, 0.2, 0.07m m m c c c c           . Also equations (20) are subject of time 

scaling 
2 2

2
1 1 12 2, ,d d d dt

dt d dt d
   

 
    where  0.726062, 1.239920, 2.221583  - 

eigenfrequencies. Thaking this into account, system (20) can be rewritten in standard form: 
1 4 2 5 3 6

3
4 1 2 4 1

5 1 2 3 5

6 2 3 6

1.89693 0.94846 0.048205 0.18969
3.7938 7.5877 3.7938 0.19282
1.8969 3.7938 0

;

.09641

; ;y y y

y

y y y

y y y y
y y y yy

y y y y





  

    
  



  





  




   (21) 

 
Correctness of the presented approaches can be confirmed in the following way. First, 

equations (21) are integrated numerically. Initial point for numerical integration is taken on the 
surface of pre-calculated  NNM. On the next step the trajectory obtained numerically (coordinates y) 
is translated to the coordinates in which NNM is defined (coordinates z). If the results are correct, the 
representation point (and the trajectory itself) must follow the surface of the NNM. 
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Eigenvalues of the matrix of linearized equations (21) are: 
- 0.0389079  0.9995934I  
- 0.0456418  1.7067491I 
- 0.0841687  3.0582103I   





 

 

For example, let us construct NNM corresponding to the first pair of values using both 
techniques from Section 3.1 and 3.2. Reordering of Schur matrices is performed in such way that the 
first one of diagonal blocks of the matrices  T  and  L  has eigenvalues close either to I  or to I . 
This was done using freeware Scilab software. 

Approximation of the NNM found by means of conventional Schur decomposition: 
3 2 2 3

3 2 1 2 1 2 1

3 2 2 3
4 2 1 2 1 2 1

3 2 2 3
5 2 1 2 1 2 1

3 2 2
6 2 1 2 1 2 1

0.01007 0.01142 0.03938 0.00243

0.01091 0.10694 0.03016 0.04069
0.00726 0.01662 0.02064 0.00558

0.00923 0.00691 0.00614 0.01203

z z z z z z z

z z z z z z z
z z z z z z z

z z z z z z z

   

   

   

     3

   (22) 

found by means of modified Schur decomposition: 
3 2 2 3

3 1 2 2 1 2 1 2 1

3 2 2 3
4 1 2 2 1 2 1 2 1

3 2 2
5 1 2 2 1 2 1

0.23387 0.28916 0.01630 0.02458 0.05976 0.00567

0.27033 0.25449 0.02352 0.16776 0.06497 0.06121
0.31409 0.27348 0.01426 0.00136 0.02661

z z z z z z z z z

z z z z z z z z z
z z z z z z z z

      

     

      3
2 1

3 2 2 3
6 1 2 2 1 2 1 2 1

0.01850

0.24890 0.33618 0.01324 0.01370 0.01939 0.01790

z

z z z z z z z z z



      

 (23) 

(it should be noted here that in each case different coordinate transformations y z   were used) 
 

On Figure 4  the trajectory of representation point of the system and NNM itself are shown. 
Therefore both dependencies (22) and (23) define invariant manifold (which is the same in both 
cases). 
 

   
   (a)      (b) 
Figure 4.  Trajectory of representation point and invariant manifold (NNM) surfaces. (a) – conventional Schur 

decomposition is used, (b) - modified Schur decomposition is used 
 

Conclusions 

In the present work two ways of application of Schur matrix decomposition to NNM 
construction are considered. If NNM by Shaw-Pierre is constructed in power series form both of the 
discussed approaches allow one to overcome a major problem of the method – presence of nonlinear 
algebraic equations with respect to coefficients of linear part of the NNM. In one case Scur 
transformation  allows one to avoid solving the algebraic equations as the sought-for solution is trivial 
one. The second approach allows one to introduce such change of variables that coefficients of linear 
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part of the NNM are evaluated from a system of linear algebraic equations. Cost of such 
simplification is usage of computationally intensive algorythm of reordering of Schur matrices. 

Also the presented approaches extend NNMs by Shaw-Pierre paradigm: during NNM 
construction independent variables in NNM expressions may not be the couple of variables of type 
“displacement + velocity”. 
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